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A B S T R A C T   

The human cerebral cortex is folded into two fundamentally anatomical units: gyri and sulci. Previous studies 
have demonstrated the genetical, structural, and functional differences between gyri and sulci, providing a 
unique perspective for revealing the relationship among brain function, cognition, and behavior. While previous 
studies mainly focus on the functional differences between gyri and sulci under resting or task-evoked state, such 
characteristics under naturalistic stimulus (NS) which reflects real-world dynamic environments are largely 
unknown. To address this question, this study systematically investigates spatio-temporal functional connectivity 
(FC) characteristics between gyri and sulci under NS using a spatio-temporal graph convolutional network 
model. Based on the public Human Connectome Project dataset of 174 subjects with four different runs of both 
movie-watching NS and resting state 7T functional MRI data, we successfully identify unique FC features under 
NS, which are mainly involved in visual, auditory, emotional and cognitive control, and achieve high discrim
inative accuracy 93.06 % to resting state. Moreover, gyral regions as well as gyro-gyral connections consistently 
participate more as functional information exchange hubs than sulcal ones among these networks. This study 
provides novel insights into the functional brain mechanism under NS and lays a solid foundation for accurately 
mapping the brain anatomy-function relationship.   

1. Introduction 

The highly folded cerebral cortex is one of the most essential features 
of human brain, consisting of functionally protruding gyri and depressed 
sulci [1–4] that constitute the biological basis of higher-order brain 
functions [5]. Gyri and sulci exhibit significant differences in genetics 
[6], morphology [7], anatomy [8], axonal connections [9], and func
tions [10] and can be regarded as two fundamental functional units of 
the brain anatomy [11], providing a unique perspective for character
izing the relationship among brain function, cognition, and behavior 
[12,13]. 

Functional Magnetic Resonance Imaging (fMRI) data with high 
spatio-temporal resolution has been widely used for probing the func
tional characteristics between gyri and sulci. Combining it with so
phisticated computational models, some pioneering studies have 
identified significant functional differences between gyri and sulci as 

well as their associations with cognitive behavior [10,11,14,15]. Spe
cifically, compared to sulcal fMRI BOLD signals with more complex and 
high-frequency temporal patterns, the gyral ones concentrate more on 
low-frequency band under both resting and task-evoked states across 
different species such as humans and macaques [10,11,16]. Compared 
to sulco-sulcal functional connectivity, the gyro-gyral ones are more 
involved in long-range with stronger strength within the brain network 
[2,14,17]. Such functional difference between gyri and sulci are related 
to fluid intelligence [15], crystal intelligence, and spatial orientation 
across multiple task-evoke conditions [14]. These findings have sug
gested different functional roles between gyri and sulci in cognitive 
performances, i.e., gyri may serve as global functional information ex
change hubs while sulci act as the local functional information pro
cessing units [2]. 

Although these studies have provided unique perspectives in 
exploring functional differences between gyri and sulci under resting or 
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task-evoked state, such characteristics under naturalistic stimulus which 
reflects real-world dynamic environments are largely unknown. People 
are often in a more dynamic natural environment in their daily lives and 
constantly receiving complex and diverse natural stimuli such as touch, 
hearing, and vision, requiring the brain to simultaneously process such 
multi-model information [18–21]. Compared to the resting state or 
specific task stimuli, the naturalistic stimuli can simultaneously evoke 
complex brain functions consisting of a wide range of brain networks 
and regions [21–25]. Therefore, it is crucial to investigate the functional 
brain connectivity characteristics between gyri and sulci under natu
ralistic stimulus in order to provide a more accurate mapping between 
brain anatomy and function. 

In order to address this question, this study systematically in
vestigates the regularity and variability of gyro-sulcal functional con
nectivity characteristics under naturalistic stimulus using a spatio- 
temporal graph convolutional network model. Graph convolutional 
networks [26] represent complex spatial topological structure of graphs 
and have received increasing interest in modeling brain networks as 
graphs in recent years. Among various graph models, the 
spatio-temporal graph convolutional network (ST-GCN) can fully inte
grate the four-dimensional spatio-temporal information of fMRI data to 
detect the dynamic changes in time as well as the inherent spatial 
functional connectivity patterns [27–29]. Specifically, we first construct 
the spatio-temporal graph based on the functional connectivity matrices 
among gyral/sulcal brain regions. We then feed the constructed graphs 
into the ST-GCN model to identify unique functional connectivity fea
tures under the naturalistic stimulus compared to resting state as a 
baseline. We finally investigate the inherent regularity and variability of 
functional connectivity between gyri and sulci from the identified 
unique functional connectivity features. 

We evaluate the proposed framework on 7T fMRI data of 174 healthy 
adults from the publicly available Human Connectome Project (HCP). 
We perform extensive classification performance comparisons of ST- 
GCN with other baseline models across four different runs of natural
istic stimulus and resting state fMRI data. We hypothesize that compared 
to other models, our proposed framework can more accurately identify 
unique functional connectivity features under the naturalistic stimulus 
which has higher classification accuracy with those under the resting 
state. We also hypothesize that gyri and sulci may play different func
tional roles in terms of different number of regions and connections 
within the functional connectivity features to encode the cognitive brain 
function under naturalistic stimulus. 

The major novelties and contributions of our study are as follows. 

(1) Our study is one of the earliest studies on the functional con
nectivity characteristics difference between gyri and sulci under 
naturalistic stimulus (NS) using 7T functional MRI data.  

(2) We adopt a spatio-temporal graph convolutional network (ST- 
GCN) to identify unique functional connectivity features which 
achieve the highest classification performance compared with 
other baseline models. The extracted functional connectivity 
features exhibit regularity in terms of functional interactions both 
within and among auditory, visual, emotional, and cognitive 
control networks.  

(3) Our study identifies that gyral regions and gyro-gyral connections 
consistently participate more than sulcal regions and sulco-sulcal 
connections, suggesting that gyri are global functional informa
tion exchange hubs and sulci are local functional information 
processing units under naturalistic stimulus, which lays a solid 
foundation for accurately mapping between brain anatomy and 
function. 

2. Material and methods 

2.1. Data acquisition and preprocessing 

This study uses the public 7T fMRI data from the Human Connectome 
Project (HCP) [30] with approval. All 174 subjects including 69 males 
and 105 females (29.34 ± 3.28 years old) with complete fMRI data are 
included in the study. Each subject is scanned under four resting states 
(i.e., REST1-REST4) as well as movie-watching states (i.e., 
MOVIE1-MOVIE4). During the resting state scan, subjects remain 
relaxed and eyes open to look at the screen with a bright crosshair on 
dark background. All resting state runs have a fixed scan time of 900s. 
During the movie-watching scan, subjects watch 4 or 5 different movie 
clips of freely available independent films under Creative Commons 
licensing or from Hollywood movies whose duration vary from 63s to 
259s. The total scan time of the four movie-watching runs ranges from 
901s to 921s. More details about the scanning protocol and movie 
contents are in https://www.humanconnectome.org/hcp-prot 
ocols-ya-7t-imaging. The major acquisition parameters of fMRI are: 
matrix = 130 × 130, FOV = 208 × 208 mm2, slice thickness = 1.6 mm, 
number of slices = 85, TR = 1000 ms, TE = 22.2 ms, and flip angle =
45◦. 

The format of the fMRI data we obtained in the study is CIFTI, which 
consists of GIFTI surface data and NIFTI volume data [31]. The 
commonly used HCP minimal preprocessing pipeline is adopted for the 
data preprocessing including two major steps of fMRIVolume and 
fMRISurface [31]. At the fMRIVolume step, spatial distortion removal, 
motion correction, registration to the structure image, bias correction, 
and global normalization are performed. Specifically, we first perform 
the gradient-nonlinearity-induced distortion correction, then realign the 
time series to correct for subject motion, and finally concatenate all of 
the transforms for each correction into a single transformation. At the 
fMRISurface step, the fMRI data in voxel space are registered and 
mapped onto the cortical surface grid of high-resolution Conte 69 mesh 
[31]. Additionally, we cut off the last few frames of each 
movie-watching scan to ensure consistent scan time of 900s with the 
resting state for fair comparisons. 

2.2. Construction of spatio-temporal graph based on functional 
connectivity 

We first define the gyral/sulcal brain regions based on the Desikan- 
Killiany atlas (DK atlas) and “sulc” value information [32,33] of the 
cortical surface (Fig. 1a). The DK atlas divides the cortical surface into 
68 regions of interest (ROIs) and the “sulc” value of a cortical vertex 
measures average convexity signing the movement of the cortical 
development process [11,32,34]. For each ROI in DK atlas, we sort all 
cortical vertices within the ROI based on the “sulc” values and define top 
20 % vertices with largest ‘sulc’ values as gyri and bottom 20 % ones 
with smallest ‘sulc’ values as sulci [15]. We therefore obtain a finer-scale 
DK atlas (i.e., GSDK atlas) containing 136 ROIs with 68 gyral and 68 
sulcal regions. The averaged fMRI BOLD signal of each gyral/sulcal ROI 
is calculated based on all BOLD signals of vertices within the ROI. 

We then define edge and node features of the spatio-temporal graph 
based on the gyral/sulcal ROIs (Fig. 1b). Note that in this study, we focus 
on the functional connectivity which quantifies the fMRI BOLD signal 
synchrony between two brain ROIs. The effective connectivity which 
measures the causal influence of one ROI’s functional activity on 
another one is left for future studies. Specifically, for the edge feature, 
we calculate functional connectivity as the widely adopted Pearson’s 
correlation coefficient ċij =

cov(Si ,Sj)

σSi σSj 
of two fMRI BOLD signals Si and Sj 

between any pair of gyral/sulcal ROIs i and j, where cov(•) is the 
covariance, σSi and σSj are the standard deviations of the signals. The 
spatial edge feature is therefore denoted as ESpatial = {ċi,j|i, j= 1, 2, …,

136 and i∕= j}. For the node feature, a fixed time window is adopted to 
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equally divide the time series of BOLD signals into T segments, and the 
functional connectivity matrix among all ROIs is calculated within each 
segment, respectively. After that, the degree of i-th ROI at the t-th 
segment is calculated as the node feature v(t)i =

∑

i∕=j
c(t)ij , where c(t)ij is the 

functional connectivity value between ROI i and ROI j at the t-th segment 
[2,35]. 

We finally construct the spatio-temporal graph based on the defined 
edge and node features (Fig. 1c). The spatial graph G(t) at t-th segment is 
constructed based on the spatial edge feature ESpatial and the set of node 
features V(t) = {v(t)i |i= 1,2, …, 136}, where t= 1, 2,…, T. The corre
sponding ROIs of spatial graphs G(t) between any two adjacent segments are 
then concatenated by the temporal edge ETemporal = {ct,t+1

i = 1|t= 1,2,…,

T− 1;i= 1,2,…,136} to obtain the spatio-temporal graph G. 

2.3. Identification of unique functional connectivity under naturalistic 
stimulus 

We feed the constructed spatio-temporal graphs under both natu
ralistic stimulus and resting state into the ST-GCN classification model in 
order to identify the unique functional connectivity features under the 
naturalistic stimulus compared to the baseline resting state (Fig. 2a). The 
major modules of ST-GCN are shown in Fig. 2b, including a batch 
normalization (BN) layer, a spatial graph convolutional network 
(SGCN), a temporal convolutional network (TCN), a global average 
pooling (GAP) layer, and a fully connected layer (FCL). Firstly, we input 
the constructed spatio-temporal graphs as fin with a BN operation to 

reduce the internal covariate shift among different subjects in the same 
batch [36], and the output is denoted as f′

in. Secondly, we carry out a 
graph convolution on the spatial graph G(t) with a spatial convolutional 
kernel WSG for each segment similar to SGCN [28]. The output f′

s is 
calculated by: 

f′
s = Λ− 1

2((A + I)⊗M)Λ− 1
2f

′
inWSG (1) 

where A ∈ R136×136 is the spatial edge feature matrix, I is an identity 
matrix, Λ is defined as Λii =

∑

j
Aij + Iii, and ⊗ represents the element- 

wise product operation. Notably, a learnable edge weight matrix M ∈

R136×136 is introduced to the spatial edge feature in Eq. (1). The initial
ized all-one matrix M reduces gradually during the training of model, in 
which the edges representing unique functional connectivity and thus 
contributing to classification also drop more slowly. Thirdly, the TCN 
with a temporal convolutional kernel WT is calculated at the temporal 
level by performing 1D convolution operation for each ROI at the time 
series respectively. The output f′

t of the temporal convolution is: 

f′
t = ReLU

(
f′

s⊛WT
)

(2) 

where ⊛ denotes the convolution, ReLU denotes the ReLU activation 
function [37]. Finally, the output classification label is obtained after the 
GAP and FCL [38] together with the edge weight matrix M representing 
unique functional connectivity features under naturalistic stimulus 
compared to the baseline resting state for the subsequent analysis. 

Fig. 1. Pipeline of constructing spatio-temporal graph based on gyro-sulcal functional connectivity. (a) Definition of the gyral/sulcal brain regions based on the DK 
atlas and “sulc” value information to obtain a finer-scale GSDK atlas of 136 gyral/sulcal ROIs and the associated fMRI signal; (b) Definition of edge and node features 
of the spatio-temporal graph based on the gyral/sulcal ROIs; (c) Construction of the spatio-temporal graph based on the defined edge and node features. 

Fig. 2. Identification of unique functional connectivity features under the naturalistic stimulus compared to the baseline resting state. (a) Overview of the ST-GCN 
classification model; (b) The major modules of ST-GCN. 
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2.4. Identification of functional connectivity regularity and variability 
between gyri and sulci 

We further investigate the regularity and variability of functional 
connectivity between gyri and sulci from the identified unique func
tional connectivity features M. Firstly, in order to obtain stable and 
accurate features across different subjects and experiment runs, we 
repeat the model training 100 times using one run as training set and the 
other three runs as the test set. After sorting all values of the upper 
triangular matrix of M and obtaining 100 ranks of each functional 
connectivity across 100 times, one-sample t-test is performed for each 
connectivity with a threshold k and false discovery rate (FDR) correction 
to obtain stable functional connectivity features M. The reproducibility 
of different thresholds k is reported in Section 3.2. Secondly, each 
functional connectivity in M is categorized into G-G, G-S, and S–S types 
corresponding to functional connectivity between gyro-gyral, gyro-sul
cal, and sulco-sulcal ROIs, and further normalized for fair comparison: 

P =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2CG− G

NG(NG − 1)
in G-G type

CG− S

NGNS
in G-S type

2CS− S

NS(NS − 1)
in S-S type

(3) 

where CG− G, CG− S, and CS− S are the number of connections in G-G, G- 
S, and S–S type, respectively. NG and NS are the number of gyral and 
sulcal ROIs, respectively. The quantitative comparisons of the number of 
three types (G-G, G-S, and S–S) as well as the number of two types of 
ROIs (gyral and sulcal) are performed to investigate the regularity and 
variability of functional connectivity characteristics between gyri and 
sulci under movie-watching naturalistic stimulation. 

2.5. Model training scheme and parameter setting 

We adopt 5-fold cross-validation strategy which is widely used in 
previous studies [39] to ensure the robustness of the classification re
sults. In our study, all subjects are split into 140 as the training set and 
34 as the test set in each fold, respectively. We use the BCELoss as the 
loss function and employ the Adam optimizer with default betas of 0.9 
and 0.999 [40]. We set the learning rate to 0.001 with a decay rate 
weight of 0.0001, the dropout rate as 0.5 to reduce the overfitting, the 
batch size to 32, the total quantity of epochs to 300, and the temporal 
kernel size to 9. The model training is based on the Pytorch framework 
with a GTX3090 GPU. 

2.6. Performance metrics of the model 

In this study, we use several metrics including Confusion Matrix, 
Accuracy, Sensitivity, Specificity and F1 Score to evaluate the model 
performance. As shown in Fig. 3a, the Confusion Matrix divides all 
samples into four categories based on the real labels and predicted 

results: True Positive (TP), True Negative (TN), False Positive (FP), and 
False Negative (FN) [41]. 

Accuracy measures the overall prediction accuracy of the classifier, 
and is defined as the proportion of the number of samples correctly 
predicted by the model to the total number of samples: 

Accuracy =
TP + TN

TP + TN + FP + FN
(4) 

Sensitivity, also known as True Positive Rate or Recall, refers to the 
proportion of the number of positive samples correctly predicted by the 
model to the total number of positive samples: 

Sensitivity =
TP

TP + FN
(5) 

Specificity, which measures the ability to identify negative samples, 
refers to the proportion of the number of negative examples correctly 
predicted by the model to the total number of negative samples: 

Specif icity =
TN

TN + FP
(6) 

F1 Score is a comprehensive evaluation index that combines Accu
racy and Recall to measure the precision and recall capabilities of a 
classifier: 

F1 Score =
2 ∗ Accuracy ∗ Sensitivity

Accuracy + Sensitivity
(7)  

3. Results and discussion 

3.1. Classification performance of unique functional connectivity features 

We evaluate the model’s ability to identify the unique functional 
connectivity features under the naturalistic stimulus by comparing the 
classification performance metrics including accuracy, sensitivity, 
specificity, and F1 score between naturalistic stimulus and resting state 
across different models. The rationale is that more accurately identified 
unique functional connectivity features under naturalistic stimulus 
would have better performance in classification with those under resting 
state as the baseline. We compare the classification performance of the 
proposed ST-GCN with four representative baseline models including 
Support Vector Machine (SVM), 1D-CNN, Long Short Term Memory 
(LSTM), and CNN + LSTM, as well as three different model architectures 
including TCN only, SGCN only, and ST-GCN without M as ablation 
studies. As reported in Table 1, the proposed ST-GCN achieves highest 
performance in all metrics with 93.06 % averaged accuracy, 93.75 % 
averaged sensitivity, 92.39 % averaged specificity and 93.10 % aver
aged F1 score across all four runs of data compared to other baseline 
models as well as other model architectures. The detailed values of 
sensitivity, specificity and F1 score in each run are reported in Supple
mental Tables 1–3, respectively. We further report the sum of the 
confusion matrices across the five folds in each run (Fig. 3b-e), which 
consistently indicates the discriminative capacity of our model in dis
tinguishing the movie-watching state from the resting state. 

Fig. 3. Visualization of the Confusion Matrix. (a) The composition of the Confusion Matrix. (b–e) The Confusion Matrix in each of the four runs.  
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In summary, the proposed model can not only effectively charac
terize the functional connectivity features among gyral/sulcal regions, 
but also accurately identify unique functional connectivity features 
under naturalistic stimulus compared to resting state. 

3.2. Regularity and variability of unique functional connectivity features 

We demonstrate regularity and variability of the unique functional 
connectivity features. Fig. 4 shows the functional connectivity features 
in run 4 as an example derived from different threshold values (0.2 %– 
1.2 %, and 0.2 % as the interval) of k in M as detailed in Section 2.4. We 
see that the overall pattern distribution of functional connectivity fea
tures is relatively stable across a specific range of threshold values 
(0.6–1.2), suggesting the robustness of identified functional connectivity 
features. Specifically, the involved functional connections are mainly 
among cuneus, fusiform, superior temporal, and transverse temporal 
gyri which are part of visual and auditory networks [42,43], as well as 
frontal lobe and limbic regions which are related to emotional and 
cognitive control [44,45]. 

We then visualize the unique functional connectivity features across 
all four runs. Fig. 5a shows the whole-brain functional connectivity 
features that exist in at least two out four runs when k = 5 %. We see that 
there are common functional connections across most of the four runs 
including 1) right pars triangularis sulcus with right insula sulcus, 2) 
right transverse temporal gyrus with right superior frontal sulcus, 3) 
right transverse temporal gyrus with left transverse temporal sulcus, 4) 
left postcentral gyrus with left transverse temporal gyrus, 5) left pre
central gyrus with left transverse temporal gyrus, 6) left precentral gyrus 
with left superior temporal gyrus, and 7) left postcentral gyrus with left 

superior parietal gyrus. Among them, left transverse temporal gyrus, 
which belongs to the primary auditory cortex and is activated by musical 
stimulation [46,47], has the most connections to the other regions. The 
superior temporal gyrus and right transverse temporal gyrus which are 
associated with auditory tasks [46,47] also have more connections with 
other regions. Fig. 5d further visualizes the degree of involved brain 
regions of the functional connectivity features. The top five regions that 
are mostly involved in these functional connectivity features are right 
and left transverse temporal gyrus, left supramarginal gyrus, right 
cuneus sulcus, and left pericalcarine gyri. which are highly correlated 
with the auditory system and visual system [48–51]. We further divide 
the whole-brain functional connectivity features across four runs into 
inter-hemispheric and intra-hemispheric ones, respectively as shown in 
Fig. 5b–c. The degree of involved brain regions of the inter- and 
intra-hemispheric features is also visualized in Fig. 5e–f. We see that the 
auditory functional networks such as transverse temporal lobe are 
involved in both inter- and intra-hemispheric functions. However, the 
inter-hemispheric connections also involve visual networks such as 
cuneus as well as emotional and cognitive control networks such as 
frontal lobe, while the intra-hemispheric ones involve more regions of 
auditory function such as superior temporal gyrus [48,51]. 

In summary, although there are certain variabilities of unique 
functional connectivity features across the four runs since the detailed 
contents of movie-watching stimulus are different, there are still func
tional connectivity regularity in terms of functional interactions within 
and among auditory, visual, emotional, and cognitive control networks 
during naturalistic stimulus. 

Table 1 
Classification performance (%) of different models and architectures in 5-fold cross-validation. The data is represented as mean ± std.   

Model Accuracy Sensitivity Specificity F1 Score  

run 1 run 2 run 3 run 4 Average Average Average Average 

Baseline SVM 65.11 ± 1.22 63.37 ± 1.86 54.92 ± 0.97 64.89 ± 1.32 62.07 ± 4.40 91.41 + 2.28 32.74 + 9.03 70.75 + 2.41 
1D-CNN 81.21 + 1.01 85.77 + 1.25 86.53 + 0.56 84.73 + 1.26 84.56 + 2.30 83.75 + 5.41 85.37 + 5.12 84.39 + 2.50 
LSTM 84.31 ± 3.14 85.98 ± 3.09 86.37 ± 2.09 86.57 ± 4.07 85.81 ± 3.14 89.31 + 4.99 81.43 + 7.92 85.96 + 2.91 
CNN + LSTM 90.03 ± 3.21 89.26 ± 3.23 87.75 ± 3.73 90.95 ± 3.20 89.47 ± 3.56 92.57 + 4.41 86.81 + 5.11 89.97 + 1.37 

Ablation Study TCN 59.50 ± 1.86 64.81 + 1.43 67.82 + 1.03 59.20 + 0.48 62.83 + 3.87 62.22 + 4.67 63.44 + 6.50 62.59 + 3.75 
SGCN 76.57 + 1.13 74.04 + 0.50 90.77 + 0.44 79.73 + 0.20 80.28 + 6.42 79.64 + 8.71 80.92 + 4.34 80.00 + 6.78 
ST-GCN W/o M 84.87 ± 9.68 84.62 ± 10.17 92.82 ± 0.72 93.85 ± 1.31 89.04 ± 8.27 90.89 + 8.50 87.06 + 9.09 89.20 + 8.12 

Proposed ST-GCN 92.74 ± 0.80 89.71 ± 3.09 94.27 ± 0.73 95.50 ± 0.92 93.06 ± 2.75 93.75 + 3.21 92.39 + 3.02 93.10 + 2.77  

Fig. 4. Visualization of the gyro-sulcal functional connectivity pattern within run 4 as an example derived from six different threshold values (0.2 %–1.2 %, and 0.2 
% as the interval) of k. (a)–(f) show the connectivity pattern under each of the six threshold values, respectively. In each sub-figure, n is the number of significant 
connections after FDR correction. Orange and blue spheres represent gyral and sulcal regions, respectively. The green lines represent the connections. 
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3.3. Functional connectivity characteristics differences between gyri and 
sulci 

We further investigate the functional connectivity characteristics 
difference between gyri and sulci within the unique functional 

connectivity pattern. Fig. 6 visualizes the unique functional connectivity 
pattern when k = 0.6 % as an example within all four runs. In run 1 
(Fig. 6a), the functional connections are mainly among fusiform, lateral 
occipital, pericalcarine, lingual, temporal lobe, and superior frontal re
gions, which are involved in visual, auditory, and face recognition 

Fig. 5. The unique functional connectivity features across all four runs at whole-brain, inter-hemisphere and intra-hemisphere. (a–c) show the circle plot of the 
unique functional connectivity features that exist in at least two out four runs when k = 5 %. The gold, green and cyan curves represent G-G, G-S, and S–S con
nections, respectively. Thicker curves indicate existence in more runs. (d–f) show the degree of involved brain regions of the functional connectivity features. The 
names of top five regions that are mostly involved in the functional connectivity features are provided. Orange and blue fonts indicate gyral and sulcal regions, 
respectively. CIN: cingulate cortex; OCC: occipital lobe; PAR: parietal lobe; TEM: temporal lobe; FRP: frontal lobe; TrT: transverse temporal; SM: supramarginal; Cu: 
cuneus; PerCa: pericalcarine; ST: Superior temporal; B: bankssts. 

Fig. 6. Visualization of the gyro-sulcal functional connectivity pattern within all four runs when k = 0.6 % as an example. (a)–(d) show the connectivity pattern 
within each of the four runs, respectively. In each sub-figure, n is the number of significant connections after FDR correction. Orange and blue spheres represent gyral 
and sulcal regions, respectively. The gold, green and cyan lines represent G-G, G-S, and S–S connections, respectively. 
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functions [52–54]. In run 2 (Fig. 6b), the total number of connections is 
less than run 1 from visual inspection, while the superior temporal re
gion and cuneus are major hubs connecting with other regions. The 
superior temporal region is more active when listening to the sound of 
the sentence than environmental sounds stimuli [46], and the cuneus is 
the central cortical hub of visual networks [43]. In run 3 (Fig. 6c), the 
connections are also among occipital and temporal lobes, as well as 
superior frontal regions which are similar to run 1. In run 4 (Fig. 6d), the 
connections are mainly among visual and auditory networks [42,43] 
including cuneus, fusiform, superior temporal region and transverse 
temporal gyri, as well as emotional and cognitive control networks [44, 
45] including frontal lobe and limbic structure. 

Although Fig. 6 illustrates the considerable variability of the func
tional connectivity pattern among the four runs due to different contents 
of movie-watching stimulus, we identify consistent functional connec
tivity characteristics difference between gyri and sulci within those 
patterns. From visual inspection, the involved number of gyral nodes as 
well as gyro-gyral connections is consistently more than sulcal nodes 
and sulco-sulcal connections, respectively across the four runs. Quanti
tatively, a paired t-test (p < 0.05) is conducted to compare the per
centage of involved numbers between gyral and sulcal nodes when k 
ranges from 0.2 % to 5 % (0.2 % as the interval). We see that the per
centage of number of gyral nodes (mean value of 70.8 %, 34.6 %, 45.2 % 
and 49.1 %) is significantly higher than that of sulcal nodes (mean 
percentage of 52.4 %, 32.8 %, 41.1 % and 40.7 %) in each of the four 
runs (Fig. 7). We further compare the percentage of numbers among 
gyro-gyral (G-G), gyro-sulcal (G-S), and sulco-sulcal (S–S) connections 
using one-way ANOVA (p < 0.05) and post-hoc t-tests (p < 0.05, Bon
ferroni correction for multiple comparisons). There is significant dif
ference among the three types of connections in each of the four runs as 
reported in Table 2. Moreover, the percentage of number of G-G con
nections (mean value of 2.64 %, 0.85 %, 1.36 % and 2.12 %) is signif
icantly larger than that of G-S (mean value of 1.49 %, 0.60 %, 0.79 % 
and 1.15 %) in all four runs and S–S (mean value of 1.29 %, 0.34 %, 1.30 
% and 1.85) in runs 1, 2 and 4 (Fig. 7). 

In summary, gyral regions as well as gyro-gyral connections consis
tently involve more than sulcal regions and sulco-sulcal connections 
within and among the auditory, visual, emotional, and cognitive control 
functional brain networks during the movie-watching naturalistic 
stimulus. These findings are consistent with previous studies 

demonstrating the functional difference between gyri and sulci under 
resting or task-evoked state based on resting state or task fMRI data [2, 
14,17,55]. That is, gyri serve as global functional information exchange 
hubs, and sulci serve as local functional information processing units 
[2]. The fundamental functional difference between gyri and sulci exists 
in all of the three states, i. e, resting state, task-evoked, and naturalistic 
stimulus, during cognitive processing. 

4. Conclusions 

In this study, the functional connectivity characteristics as well as 
such functional connectivity difference between gyri and sulci during 
movie-watching naturalistic stimulus are investigated. To the best of our 
knowledge, this is one of the earliest studies to systematically explore 
the functional connectivity characteristics difference between gyri and 
sulci under naturalistic stimulus. A total number of 174 subjects with 
four different runs of movie-watching naturalistic stimulus as well as 
resting state 7T fMRI data from the publicly available Human Con
nectome Project dataset are effectively modeled via the spatio-temporal 
graph convolutional network model. 

Firstly, the experimental results demonstrate that the proposed 
framework effectively identifies unique functional connectivity features 
under naturalistic stimulus and achieves the highest classification per
formance with 93.06 % averaged accuracy, 93.75 % averaged sensi
tivity, 92.39 % averaged specificity and 93.10 % averaged F1 score 
compared to other models. Secondly, although the identified unique 
functional connectivity features vary across the four different runs of 
movie-watching stimulus, they still exhibit regularity in terms of func
tional interactions both within and among auditory, visual, emotional, 

Fig. 7. Statistical comparisons of the percentage of involved numbers of nodes and connections (edges) between gyri and sulci when k ranges from 0.2 % to 5 % (0.2 
% as the interval) in each of the four runs. The orange and blue spheres represent the percentage of number of gyral and sulcal regions, respectively. The gold, green 
and cyan diamonds represent G-G (gyro-gyral), G-S (gyro-sulcal), and S–S (sulco-sulcal) connections, respectively. * indicates p < 0.05, and *** indicates p < 0.001. 

Table 2 
Comparison of percentage of connections among G-G, G-S and S–S using one- 
way ANOVA in each of the four runs.  

Runs Mean percentage of connections (%) One-way ANOVA 

G-G G-S S–S F-value P-value 

Run 1 2.64 1.49 1.29 8.823 0.00037 
Run 2 0.85 0.60 0.34 7.719 0.00092 
Run 3 1.36 0.79 1.30 0.629 0.03129 
Run 4 2.12 1.15 1.85 5.450 0.00625  
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and cognitive control networks. Finally, within these functional con
nections among different functional brain networks, gyral regions and 
gyro-gyral connections consistently participate more than sulcal regions 
and sulco-sulcal connections, suggesting that the principle of funda
mental functional difference between gyri and sulci, i.e., gyri are global 
functional information exchange hubs and sulci are local functional 
information processing units, also exists under naturalistic stimulus 
besides resting state or task-evoked state. 

One limitation of this study is that the publicly available 174 subjects 
with both 7T resting state and movie-watching state fMRI data from the 
Human Connectome Project (HCP) are used. Compared with other 
studies using 3T resting state or task evoked state fMRI data, the sample 
size of 7T data is relatively small. Another limitation is that there is no 
independent test dataset with both 7T resting state and movie-watching 
state fMRI data to validate the proposed model. 

In conclusion, this study for the first time unveils the fundamental 
principle of functional difference between gyri and sulci under natu
ralistic stimulus, further extending previous findings on resting and task- 
evoked states and together warranting that such principle of gyro-sulcal 
functional difference is universal across all cognitive processing state, 
which lays a solid foundation for accurate mapping between brain 
anatomy and function. 

In the future, the regularity and variability of gyro-sulcal functional 
connectivity characteristics under different types (e.g., horror, comedy, 
etc.) of movie clips could be further investigated if the relevant data are 
available. The spatio-temporal dynamics of gyro-sulcal effective con
nectivity characteristics could also be investigated based on various 
models such as Dynamic Bayesian Networks [56–58]. It is also inter
esting in exploring the potential relationship of semantics between the 
visual representations in the gyro-sulcal functional brain connectivity 
pattern of the biological neural networks and in various of artificial 
neural networks [59]. 
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